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When a long horizontal cylinder filled with fluid is differentially heated at the end 
walls at high Rayleigh number, A ,  the axial flow in the midsection consists of 
boundary layers a t  the top and bottom of the cylinder flowing in reverse directions, 
and the temperature is stably and linearly distributed in the vertical. Both the 
temperature and the flows are almost independcnt of the axial dimension. Thc 
adiabatic boundary condition on the cylinder requires temperature corrections which 
can induce cross-section boundary layers on the cylindrical wall and vertical internal 
boundary layers in the middle. Both types of boundary layers are 0lA- t )  in width. 
Matching different boundary layers at the poles is achieved through additional A-b 
and A-Q layers. The maximum boundary-layer velocity is calculated to be almost 
one-quarter of the axial velocity observed in experimcnts for A = 10'. 

1. Introduction 
The problem of convection in an insulated horizontal cylinder with differentially 

heated endwalls has attracted many workers since Hong published his paper in 1977 
(Hong 1977; Bejan & Tien 1978; Kimura & Bejan 1980a, b ;  Shih 1981; Schiroky &, 
Rosenberger 1984a, b ;  Smutek et al. 1985, amongst others). These authors have used 
experimental, analytical and numerical techniques in their studies, and have covered 
a wide range of Rayleigh numbers, from lo3 to 10'. The practical application of this 
problem in crystal growth in the semiconductor industry and in heat transfer in 
nuclear reactors has been emphasized in all the works mentioned above. It seems that 
the primary objectives of these studies are to determine the overall heat transport 
from one end of the cylinder to the other. Bejan & Tien (1978) were the only authors 
to have analysed the secondary cross-sectional flows a t  axial positions sufficiently far 
away from the endwalls that these flows can be considered independent of the axial 
dimension. Bejan & Tien studied the low-Rayleigh-number limit, and expanded the 
stream function and temperature in powers of the Rayleigh number in the way 
used by Batchelor (1954) in his analysis of low-Rayleigh-number convection in a 
differentially heated rectangular cavity. In  this paper, we shall consider the cross- 
sectional flows in the other limit, when the Rayleigh number approaches infinity. It 
appears that none of the studies cited above has addressed this particular problem. 
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2. Axial flows and temperature distribution at large Rayleigh number 
Experiments a t  high Rayleigh number (Kimura & Bejan 1980a; Schiroky & 

Rosenberg 1984a) show that the flows in the vertical axial plane arc vcry similar to 
those in a differentially heated rectangular cavity, studied by Elder (1965), Gill 
(1966), Quon (1972), de Vahl Davis (1983) and others. (Also, see Quon 1983b and de 
Vahl Davis & Jones 1983 for a more complete list of references.) Especially relevant 
to the flows in a long cylinder are the works of Cormack, Leal & Imberger (1974a), 
Cormack, Leal & Seinfeld (1974b), Imberger (1974), Bejan, Al-Homoud & Imberger 
(1981), Simpkins & Dudderar (1981), and Simpkins & Chen (1986) for natural 
convection in a shallow cavity. Observations also show that a t  high Rayleigh 
number, the boundary-layer flows are dominant along both the endwalls and the 
cylindrical wall. The fluid flows up a thin boundary layer next to the hot end, and 
then axially along the upper inner cylindrical surface in a second thin layer. After 
reaching the opposite end of the cylinder, the fluid sinks along the cold wall and then 
reverses its axial flow direction along another boundary layer on the lower cylindrical 
surface to complete the circuit. The axial flow in the interior is infinestimal. The 
three-dimensional temperature distribution is very complex. However, if the cylinder 
is sufficiently long, the temperature distribution in the cross-section over a large 
portion of the cylindrical interior can be considered two-dimensional, as a function 
of x and y, or r and 4 ,  only. As shown in the experiments, the fluid is gravitationally 
stable with an almost linear vertical temperature gradient (Kimura & Bejan 1 9 8 0 ~ ) .  
The heat source and sink are provided by the axial boundary layers a t  the top and 
bottom of the cylinder where the temperatures almost attain the respective values 
at the endwalls. Since the temperature in the interior is a function of y only, say 
T = y, y being the vertical coordinate (see figure l),  T cannot meet the adiabatic 
boundary condition a T p =  0 (in fact, the argument holds for any arbitrary 
temperature function of x and y). In order to satisfy this boundary condition, there 
must be boundary-layer corrections in temperature, which in turn generate some 
cross-sectional boundary-layer flows along the curved surface. The problem is very 
similar to that considered by Quon (1976, 1983a), and some of the solutions from the 
previous studies can be applied here to advantage. The mechanism that induces the 
boundary-layer flow was originally proposed by Phillips (1970) and Wunsch (1970) 
as a mixing process along oceanic boundaries. They studied the flows induced along 
a straight, slanted, impermeable boundary in a fluid with a stable, linear 
stratification. 

3. Statement of the problem 
We shall assume a stably stratified fluid enclosed in a cylindrical container as 

illustrated in figure 1. Note that if the flow is two-dimensional, the final steady state 
has to be motionless and isothermal because of the adiabatic boundary condition on 
the cylindrical wall. However, if we assume a forced axial flow supplying heat a t  the 
top and draining off heat a t  the bottom of the cylinder as thermal source and sink, 
the linearly stratified state is a physically realizable one. For concreteness, we shall 
accept this as an approximation to the zero-order state obtained from experiments. 

The governing equations of motion and energy are the two-dimensional 
Navier-Stokes equation and the heat transport equation. If we non-dimensionalize 
the equations with lengthscale a, the radius of the cylinder, with characteristic 
velocity U = K / a ,  or characteristic stream function K ,  and with characteristic 
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FIGURE 1 .  The physical system and coordinates. 

temperature +AT = +(% - TJ, where K is the thermal diffusivity of the fluid, T,  the 
temperature a t  the top, and the temperature a t  the bottom, then the non- 
dimensional governing equations for steady states are as follows (see Quon ( 1 9 8 3 ~ )  
for details of argument ; much of the discussion there also applies here) : 

(1) 
aT aT 

eV*Y+co~$--sin$r-~- = 0[ec-'J(V2Y, u33, 
ar a$ 

V 2 T -  J (  Y, T )  = 0, ( 2 )  

with the following boundary conditions ; 

ay 
- = O ,  Y = - = O  a t  r = l ,  
aT 
ar ar 

where Y is the Stoke's stream function, and the radial and azimuthal velocities are 
respectively defined as u = r-'a@/a$, and v = --a@/a~. In  ( 1 )  and (2) 

and V 4  = V 2 v 2 ,  E = A-' = [ag$ATa3/(~v)]- ' ,  

A is the Rayleigh number, u = v / K  is the Prandtl number, and v, K ,  01, and g are, 
respectively, the kinematic viscosity, thermal diffusivity, coefficient of cubical 
expansion, and the Earth's gravity. 

We cannot discard the right-hand side of (1)  a priori. However if we can show that 
it is indeed small after we have obtained the solutions, we are justified in dropping 
this term in the analysis. It is certainly negligibly small if the Prandtl number is 
infinitely large. 
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Let us assume the total solutions to be of the following form: 

where T(O) is the interior solution, and $(O) is some asymptotic value of $, and also 
can be considered as the interior solution. 8 and $ are the boundary-layer corrections. 
Substituting (3) and (4) into ( 1 )  and (2),  we have, 

The boundary conditions are : a$/& = $ = 0, and attlar = - i3F0)/c?r = -sin Q a t  
r = 1.  4' and $ approach some asymptotic values in the interior which are yet to be 
determined. Equations ( 7 )  and (8) both impose constraints on the stream function 
$(O), which we shall discuss next. 

4. Solutions of the problem 
Equation (8) shows that in the interior, $ ( O )  = I , ~ ( ~ ) [ T ( ~ ) ]  = $( ' ) (y) .  In other words, 

the interior flow, if exists a t  all, must be parallel to the isotherms. The intuitive 
explanation is that because the gravitationally stable interior is strongly stratfied as 
A + 00, it  is difficult for any vertical motion to persist except under very special 
conditions as we shall see later. The flows are therefore most likely to be horizontal 
along the isotherms. Another observation is that since T(O) = y ,  aT(O)/an: = 0. Hence 
$(O) is approximately governed by ( 7 ) .  No motion is generated by buoyancy in the 
interior. Any motion there must be due to some entrainment or detrainment from the 
boundary layers, which essentially serve as boundary conditions for ( 7 ) .  We shall 
come back to the discussion of the interior flow again after we havc obtained the 
boundary-layer solutions. 

Obviously, there are a t  least three flow regimes in addition to the flow in thc 
interior. They are, (as shown schematically in figure 1 for the first quadrant'): ( i )  
$ + in, r = 1 ,  (ii) $ = fn,r < 1, and (iii) Q z in,r = 1. (i) and (iii) will givc boundary 
layers on the curved surface, and (ii) will give internal boundary layers. We shall 
consider them separately, and determine precisely the angular span over which the 
equations governing each flow regime are deemed valid later. 

(i) Q =i= $ 7 ~  or in, r = 1 ,  boundary layer o n  the cylindrical surface 
In  order to obtain boundary-layer solutions, we shall scale (5) and (6) with the 
stretched coordinate '1 = E-:( 1 - r ) .  Replace r-l a/a$ by a/&. Since we are considering 
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the neighbourhood of r = 1, we shall assume a5 to be independent of r .  With these 
transformations, we have 

For q5 =+ in, (9) and (10) can be simplified as follows: 

aG -- cos#- = O(d) ,  
a714 a7 

-+cos#- = O(€f) ,  
av2 a7 

a2G 

where 8 = efG, with the modified boundary conditions: $ = a$/ay = 0 and 
aG/aV = -sin# a t  7 = 0. These are similar to the Ekman-boundary equations in 
rotating fluids (Greenspan 1968). We can readily obtain the following solutions (Quon 
1983 a )  : 

$ = tan#[i-exp(-A\r) ( c o s h ~ + s i n ~ r ) l + ~ ( e ~ ) ,  (13) 

0 = eiG = -€:(sin # / A )  exp ( - hv) cos h7 + O(si), (14) 

where A = cos+#/2/2. 
Equation (13) gives tan# as the asymptotic condition for $ ( O )  at T = 1. Hence we 

can deduce the interior solution to  be $10) = + y/( 1 - y2); which is equal to tan # a t  
r = 1. This is consistent with our assumption that $(O) = @(O)(y). (Note that we can 
also write tan # = (1 - z 2 ) i / x  a t  r = 1 as an alternative asymptotic condition. This, 
however, contradicts our requirement that $(O) = $(O)(y), although the latter form for 
tan # is a perfectly good solution if the interior isotherms are vertical !) 

We note that in the second quadrant, tan# < 0. (Note that in h = cod#/2/2, 
cosi# comes from (cos*#)f, therefore it does not matter whether cos# is positive or 
negative.) Hence the asymptotic condition is $(O) = - y/ ( l  -y2)i. Equations (13) and 
(14) are still valid solutions. This means that, by symmetry, there is a sharp jump in 
the interior stream function a t  # = in between the first and second quadrants. There 
is no discontinuity in the temperature, because 0 asymptotically goes to 0 in the 
interior. In quadrant 3, tan# > 0, but y < 0. Therefore $(O) = - y( 1 - y2)4 and in 
quadrant 4, $(O) = y(1- y2)i. It is obvious that there is also a discontinuity in $(O) 

between the third and fourth quadrants at q5 = tn. However, the interior stream 
functions are continuous a t  y = 0, for 1 > x > - 1 ,  where @ is zero. Consequently 
there is no need for a boundary layer a t  y = 0. I n  the next section, we shall find ways 
to smooth over these discontinuities a t  x = 0. 

Now we can also check whether y/ ( l  -y2)i satisfies (7).  For IyI < 1, we can expand 
y/( 1 - y2); = y + iy3 +&y5 + . . . . We have eV4$(0) = 0 + O(sy). Hence, y/( 1 - y2)i 
satisfies (7) with an error O(ey) which is bounded for IyI < 1.  Since @(O) = @(O)((Y), 

e c ~ - ~ J ( $ ( ~ ) ,  V2$(O)) = 0, which is the error term in ( 1 ) .  Hence no error is introduced 
into the interior stream function by neglecting the intertial terms, regardless of the 
value of u as long as i t  is greater than unity ! 
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(ii) $ = in or $c, r < 1, the internal boundary layer 
When $ = in, we shall use the Cartesian coordinates, (x,y) and the relevant 
equations are 

a4$ ae 
€--- = O(€$ zxyy ), 

ax4 ax 

Equations (15) and (16) are valid for the internal boundary layers on both sides of 
the y-axis. However, the stretching procedure is slightly different in the two half- 
planes. 

(a)  First and fourth quadrants, x > 0 
Using stretched coordinate 6 = &x, (15) and (16) become 

Note that (17) and (18) are the same as (1 1) and (12) if we replace cos $ in the latter 
by unity and e - b  by G and multiply (18) by d. The solutions are therefore also of 
Ekman-boundary-layer type, although the dynamical origins of these two distinct 
boundary layers are different. On the cylindrical surface, the temperature corrections 
induce a boundary-layer flow, which in turn forces a gentle flow in the interior. 
Conversely, the discontinuity of the induced interior flow at x = O  generates an 
internal boundary layer. The resulting temperature perturbation due to this internal 
boundary layer can thus be viewed as an effect rather than a cause. 

Since the stream function is antisymmetric about x = 0, we expect the stream 
function and its second derivative to be zero a t  x = 0. This implies a non-zero and 
continuous velocity (first -order derivative of $) across the vertical axis a t  x = 0. On 
the other hand, we expect a continuous temperature a t  x = 0. Therefore, we shall 
impose the following boundary conditions on (17) and (18) : 

8 continuous a t  x = 0, O - t O  as g+ 00 

Then the solutions are 

where y?(O)y/( 1 - yz);. 



Convection induced by a n  insulated boundary in a cylinder 207 

(b)  Second and third quadrants, x < 0 
For x < 0, we shall use the stretched coordinate f ;  = -six. Then (15) and (16) 

become 

If we replace 8 by -8 and (21) and (22), they revert to the form of .(17) and (18). 
Hence the solutions for (21) and (22) are 

+ = $(o)[1-exp(-f;/2/2)cos(~/2/2)1+~€~),  (23) 

8 = &(0)/2/2exp(-f;/2/2) [ cos (~ /2 /2 ) - s in ( f ; /~2 )1+0(~~) ,  (24) 

where $(O) = - y / (  1, - y2)i. 
A t  x = 0,8 = -@y/ ( l  -y2$ from both (20) and (24). Hence 8 is continuous a t  x = 

0. We also have $ = 0 and a2$/ax2 = 0 at x = 0, which are the imposed boundary 
conditions. Furthermore 

at x = o  for y > 0, 

and 

from (19) and (23). Therefore, by a$/ax = u, the radial velocity (the vertical velocity 
at  x = 0) is continuous across x = 0. 

Except for the polar regions in the neighbourhoods of 4 = in, and $n at r = 1, we 
have found solutions for the temperature and stream function over the whole 
cylinder cross-section. Let us summarize what we have found so far, and estimate 
what additional solutions may be required in these polar regions to make the 
solutions complete. 

In figure 2( a ,  b)  we have plotted $ and 8 as functions of r a t  two values of 4 in the 
neighbourhood of r = 1. Note that the amplitudes of both $ and 8 are decreasing 
with decreasing q5. This indicates that the larger the boundary slope ( = -cot 4), the 
weaker the boundary layer. Thus $, the mass flux, is detrained into the interior as 
the flow proceeds from # = @ to 0 (in the first quadrant). It decreases until it  has 
completely emptied itself into the interior a t  y = 0. This efflux from the boundary 
layer is what creates the slow motion in the interior. 

In figure 3 (a ,  b)  we have plotted $ and 8 across the internal layer at y = $. We see 
that both functions are continuous at x = 0 as required. The temperature has a cusp 
due to the maximum advection a t  x = 0. The internal layer in fact consists of two 
boundary layers side by side. 

It is now appropriate to establish rigorously how close to the poles the above 
solutions are valid. We have neglected the last terms in (9) and (10) in comparison 
with the second terms. Since a8/ar and a8/as = 0(1), we must have 6-f $- tan$, or 
& + cot(#) = tan($-$) = tany = y+y3/3+y5/15+ ...,y = ($--$). If y 6 1, we 
can approximate tan y by y. Hence for (11) and (12) to be valid approximations to 
(9) and (lo), we must have s+ + y. For example we can require y = lo&. If we assume 
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FIGURE X(a). For caption see facing page. 
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FIGURE 2. ( a )  $as a function of r at:(i) 4 = 30°, (ii) 4 = 75'; = rsin4/(1-r2sin24)i. ( b )  8 as 
a function of r a t  : (i) 4 = 30°, (ii) 4 = 75" ; !Po) = r sin 4. 
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FIGURE 3. (a )  9 across the internal layer a t  y = %; ,+(O) = -y/(l -y2)i. ( b )  0 across the internal 
layer at y = i; < = OX, = -OX.  
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e = then we cannot use the solutions within an angle of 0.1 rad, or 5.73" 
of the poles. What this means is that the internal boundary layer is valid up to 
y = sin84.27" = 0.995. At this value of y, the interior stream function is tan 
84.27" = 9.97, and the non-dimensional horizontal velocity iSa$/ay = 89.24. Ifwe use 

K = 1.4 x cm2/s, and a = 7 cm, as used in Kimura & Bejan (1980a), then the 
characteristic velocity is 2.0 x lop4 cm/s. The above velocity is 1.78 x cm/s, 
which is about one tenth of the observed axial velocity. If we calculate the maximum 
velocity in the boundary layer from (13) at hq = in, i.e. v = -a$/& = -e-ia$/aq, 
we have v = -2.30s-a = -230, corresponding to a dimensional velocity about 
4.60 x cm/s, about one quarter the axial speed observed by Kimura & Bejan 
(1980~) .  Also note that our Rayleigh number is one sixteenth of that defined by Kimura 
& Bejan for the same set of parameters. In  the vicinity of the poles, there are other 
mechanisms that will alter the flow somewhat. We shall study this possibility 
next. 

(iii) $ x irt or in, r = 1, boundary layer at the poles 

In Quon (1983a, Case 2, p. 635), the case for $ = $T, has an almost one-to-one 
correspondence to the situation here. When = in, ( 5 )  and (6) become 

We are considering r x 1. We shall make the following substitution: 

r d $  = ds, > s > 0, p = &, 0 = px, 
to obtain 

As discussed in Quon (1983a), and more thoroughly in Stewartson (1957) and 
Greenspan (1968), (27), and (28) can take a single pi layer or pi and pi double layers. 
The criterion for using a single layer or double layers depends on whether x is a 
symmetric or antisymmetric function of s. If x is symmetric about s = 0, $ is 
antisymmetric and vice versa. By replacing $/n = (5-2) in Quon (1983a, equations 
(33') and (34')) (this substitution is necessary to  give non-zero asymptotic values for 
the internal boundary layer extension to match onto a t  s = $x as shown below), we 
have, using superscript (iii) to  identify the area of validity, 

e x p ( - ~ m ~ 8 ) - 2 e x p ( - ~ o m ~ Z ) c o s  
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I I \  0.25 I \  

\ 
FIGURE 4. (a) Schematic of composite cross-sectional flows and yVo) as a function of y in the 

first quadrant. (b )  Possible helical flows on the inner surface of the cylinder. 

where el = , d ( l  - r ) ,  5, =,p-f(l - r ) ,  and C T ~  = 2mrc. Therefore the two boundary- 
layer thicknesses are O ( p )  and O ( , d )  respectively. 

If we substitute (29) and (30) into (27) and (28), we see that they do indeed satisfy 
the equations, to their respective order of accuracy. We can also see that they satisfy 
the boundary conditions yViii) = = 0, and pax(iii)/2r = - 1 a t  r = 1. 
Furthermore, x + O  as el, c2+ co. However, in order for $(iii) = 0 to hold a t  r = 1, 
we must have 

This is valid only for Is1 < trc which is always satisfied in the neighbourhood of 
the poles. Now, we need to match $(iii) onto the interior stream function at some 
y, or at some value of <,. The matching is clearly possible at (1  - T )  < pf where 
Ijf(”’) z pd. This somewhat convoluted procedure of matching near q5 = krc is 
necessary mainly because the interior solution, tan 4, which is valid for 4 < in, is 
undefined a t  4 = in. Therefore there is no interior solution to match onto a t  c,, = 0 
asym totically. The function of the pi layer is to serve as asymptotic condition for 
the pr inner layer, and thus help the latter to satisfy the boundary condition at 
r = 1 .  Note that both $(iii) and x(iii) + 0 as el, c, + 00. In  the second quadrant, we 
shall replace ( s / x )  by - (s/n) in (29). Hence $(”’) changes sign. In  order to smooth 
the discontinuity between @(iii) on both sides of the y-axis, we need the extension of 

P 
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the interior boundary layer of the following form (see Quon 1983a, equation 
(35q  b)  and (36)): 

pi) = ~c(c~[,t[1-expf-6/1/2)cos(6/1/21, 

x(ii) = p41/2c(cl) [I -exp ( - < / 1 / 2 )  [cos (6/42)-sin ( ~ / 4 2 ) 1 ,  

(31 a, b)  

(32) 

where C(&) = (8p)-iexp (-2iCJ. The superscript (ii) designates the area of extension 
in the internal layer. 

Obviously these solutions match onto the leading terms of fiii) and x(iii) as 
6 + 00 and they go to 0 as cl --f 00, and therefore they contribute nothing to the inter- 
nal layer in the fluid interior. One can do similar matching for the boundary layers on 
the curved surface. It suffices to know that the possibility exists. More importantly, 
the pi layer is sufficiently strong to enable the mass flux in the two separated d layers 
to communicate with each other. I n  figure 4 ( a )  we have sketched a rough diagram 
to show the composite flows in the first quadrant. If two jets of axial flows are added, 
one can visualize the possible helical flows on the cylindrical surface as illustrated in 
figure 4 ( 6 ) .  

5. Mechanism of boundary-layer entrainment and detrainment 
Physically it is quite clear why the boundary-layer detrainment from the 

cylindrical surface is necessary. We have shown that the boundary layer flux of a 
sloping surface is inversely proportional to the absolute value of its slope. The flux 
has to leak out as the slope of the curved surface increases from 0 to 00 as q5 changes 
from or !rc to q5 = 0 or rc. Dynamically, both the detrainment and entrainment 
are equivalent to the Ekman suction in a rotating fluid. This can be shown 
mathematically as follows. 

For ease of algebraic manipulation, we shall consider the entrainment of the 
internal boundary layer. The influx into this boundary layer will be equal to the 
efflux from the opposite boundary layer on the curved surface a t  the same y-level. We 
shall start with (16) in Cartesian coordinates (2, y) with the corresponding velocity 
components (2; = -a$/jay,.; = a$/ax), and the continuity equation a2;/ax+aG/ay = 
0: 

-+- = 0. a2e a$ 
ax2 ax 

Differentiating the above equation with respect to y once, replacing x in the first term 
with stretched coordinate x = & and making use of the continuity equation in the 
second term, we have 

- 0. +- - c-5--- - a3e a z $  - a3e a2; 
ayaxz axay ayap ax 

Integrating the above equation once with respect to  x, we have 

as x+xo, c+ 00, xo being some value of x just outside the boundary layer. Then, 

(2;(x0)-'Li(O)) = 6-z- l:y[:]::,: - 
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0 being given by the boundary-layer solution in (20). Since d(0) = 0, we obtain 

Therefore the suction velocity is the same as the interior velocity. (One can as readily 
obtain the suction velocity by integrating the continuity equation directly.) Clearly 
if $(O) = constant, there would be no entrainment or detrainment. Recall that the 
variation in $(O)'(y) arises from the fact that the cylindrical surface is curved. If it 
were a linear surface, it would have a constant slope which is equal to -cote, and 
$(O) = t an8  = constant (Wunsch 1970; Phillips 1970; Quon 1976, 1983a). 

6. Discussion 
We have studied the cross-sectional flows in an insulated cylinder differentially 

heated on the two endwalls at high Rayleigh number. The assumption of two- 
dimensionality of the secondary cross-sectional flows may not hold exactly, and the 
zero-order temperature distribution in the vertical may vary somewhat from linearity 
when the Rayleigh number and the aspect ratio of the cylinder Lla,  L being the 
length, are not sufficiently large. The fundamental mechanism and the basic 
structure of the boundary layers are quite clear. Some aspects of the boundary-layer 
flows ought to be visible in laboratory experiments, if, as we have shown, it is as large 
as a quarter the speed of the axial flow for A = lo8. 

One should also take into consideration these boundary-layer structures when 
designing three-dimensional numerical experiments. Reasonably fine grids are 
required to resolve these boundary layers. Quon (1983 b)  has thoroughly discussed 
the effects of grid spacings on the numerical computations of high-Rayleigh-number 
convection in two dimensions. 
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